References for René Descartes

Version for printing
  1. M S Mahoney, Biography in Dictionary of Scientific Biography (New York 1970-1990).
    http://www.encyclopedia.com/doc/1G2-2830901149.html
  2. Biography in Encyclopaedia Britannica.
    http://www.britannica.com/eb/article-9108563/Rene-Descartes

Books:

  1. W Arnold, Descartes, in H Wussing and W Arnold, Biographien bedeutender Mathematiker (Berlin, 1983).
  2. Y Belaval, Leibniz critique de Descartes (Paris, 1960).
  3. D M Clarke, Descartes' Philosophy of Science (1982).
  4. R Dugas, De Descartes à Newton par l'école anglaise (Paris, 1953).
  5. S Gaukroger (ed.), Descartes: Philosophy, Mathematics, and Physics (1980).
  6. E S Haldane, Descartes: His Life and Times (1966).
  7. J E Hofmann, Geschichte der Mathematik. Teil I : Von den Anfängen bis zum Auftreten von Fermat und Descartes (Berlin, 1963).
  8. V Jullien, Descartes. La 'Géométrie' de 1637 (Paris, 1996).
  9. Ya Lyatker, Descartes (Spanish) (Moscow, 1990).
  10. H Montias, Descartes (French) (Paris, 1969).
  11. I Sp Papadatos, Arithmetic polygons of the ancient Greeks and arithmetic polyhedra of Descartes (Greek) (Athens, 1982).
  12. L Pearl, Descartes (1977).
  13. J Rée, Descartes (1974).
  14. G Rodis-Lewis (ed.), La Science chez Descartes (1987).
  15. J F Scott, The Scientific Work of René Descartes (1987).
  16. W R Shea, The Magic of Numbers and Motion: The Scientific Career of René Descartes (1991).
  17. T Sorell, Descartes. Past Masters (New York, 1987).
  18. J R Vrooman, René Descartes: A Biography (1970).
  19. J Vuillemin, Mathématiques et métaphysique chez Descartes (Paris, 1960).

Articles:

  1. E J Aiton, Descartes's theory of the tides, Ann. of Sci. 11 (1955), 337-348.
  2. L Alanen, On Descartes' argument for dualism and the distinction between different kinds of beings, in The logic of being (Dordrecht, 1986, 223-248.
  3. M Bartolozzi and R Franci, The rule of signs, from its statement by R Descartes (1637) to its proof by C F Gauss (1828) (Italian), Arch. Hist. Exact Sci. 45 (4) (1993), 335-374.
  4. A Lo Bello, Descartes and the philosophy of mathematics, The Mathematical Intelligencer 13 (1991), 35-39.
  5. J Bernhardt, La polémique de Hobbes contre la 'Dioptrique' de Descartes dans le 'Tractatus opticus II' (1644), Rev. Internat. Philos. 33 (3) (1979), 432-442.
  6. H J M Bos, Descartes, Pappus' problem and the Cartesian parabola : a conjecture, in The investigation of difficult things (Cambridge, 1992), 71-96.
  7. H J M Bos, On the representation of curves in Descartes' 'Géométrie', Arch. Hist. Exact Sci. 24 (4) (1981), 295-338.
  8. H J M Bos, Algebraization in Descartes' 'Géométrie' (French), in Symposium dedicated to A F Monna (Utrecht, 1980), 42-57.
  9. H J M Bos, Descartes and the beginning of analytic geometry (Dutch), in Summer course 1989 : mathematics in the Golden Age (Amsterdam, 1989), 79-97.
  10. J Bouveresse, La théorie du possible chez Descartes, Rev. Internat. Philos. 37 (3) (1983), 293-318.
  11. C B Boyer, Descartes and the geometrization of algebra, Amer. Math. Monthly 66 (1959), 390-393.
  12. C B Boyer, Fermat and Descartes, Scripta Math. 18 (1952), 189-217.
  13. H Breger, Über die Hannoversche Handschrift der Descartesschen 'Regulae', Studia Leibnitiana 15 (1) (1983), 108-114.
  14. H Burkhardt, Modalities in language, thought and reality in Leibniz, Descartes and Crusius, Synthese 75 (2) (1988), 183-215.
  15. R B Carter, Descartes' methodological transformation of 'Homo sapiens' into 'Homo faber', Sudhoffs Arch. 68 (2) (1984), 225-229.
  16. D M Clarke, Descartes' critique of logic, in Truth, knowledge and reality (Wiesbaden, 1981), 27-35.
  17. P Costabel, Descartes et la mathématique de l'infini, Historia Sci. 29 (1985), 37-49.
  18. P Costabel, Descartes et la racine cubique des nombres binômes, Rev. Histoire Sci. Appl. 22 (2) (1969), 97-116.
  19. A C Crombie, Expectation, modelling and assent in the history of optics. II. Kepler and Descartes, Stud. Hist. Philos. Sci. 22 (1) (1991), 89-115.
  20. K Devlin, Good-bye Descartes?, Math. Mag. 69 (5) (1996), 344-349.
  21. A V Dorofeeva, Descartes and his 'Geometry' (Russian), Mat. v Shkole (5) (1987), 51-53.
  22. F Duchesneau, The 'more geometrico' pattern in hypotheses from Descartes to Leibniz, in Nature mathematized I (Dordrecht-Boston, Mass., 1983), 197-214.
  23. B Eastwood, Stansfield Descartes on refraction : scientific versus rhetorical method, Isis 75 (278) (1984), 481-502.
  24. W Eisenberg, Theorienauffassungen in der Physikgeschichte. 17. Jahrhundert - zum Vergleich der Theorienauffassungen von R Descartes und C Huygens, Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg Math.-Natur. Reihe 38 (1) (1989), 121-126.
  25. A Elzinga, Huygens' theory of research and Descartes' theory of knowledge. II, Z. Allgemeine Wissenschaftstheorie 3 (1) (1972), 9-27.
  26. A Elzinga, Huygens' theory of research and Descartes' theory of knowledge. I, Z. Allgemeine Wissenschaftstheorie 2 (2) (1971), 174-194.
  27. P J Federico, Descartes on polyhedra. A study of the 'De solidorum elementis', in Sources in the History of Mathematics and Physical Sciences 4 (New York-Berlin, 1982).
  28. J O Fleckenstein, Von Descartes zu Leibniz, Math.-Phys. Semesterber 11 (1964/1965), 129-143.
  29. E G Forbes, Descartes and the birth of analytic geometry, Historia Math. 4 (1977), 141-151.
  30. M Galuzzi, Recent intepretations of Descartes' 'Géométrie' (Italian), in Science and philosophy (Milan, 1985), 643-663.
  31. M Galuzzi, The problem of tangents in Descartes' 'Géométrie' (Italian), Arch. Hist. Exact Sci. 22 (1-2) (1980), 37-51.
  32. E Giusti, Le problème des tangents de Descartes à Leibniz, in 300 Jahre 'Nova methodus' von G W Leibniz (1684-1984) (Wiesbaden, 1986), 26-37.
  33. A Gloden, L'oeuvre mathématique de Descartes, 1596-1650, dans le cadre de la science de son époque et à la lumière des mathématiques modernes, Les Cahiers Luxembourgeois 27 (6) (1955), 243-250.
  34. J Grabiner, Descartes and problem-solving, Math. Mag. 68 (2) (1995), 83-97.
  35. E Grosholz, Descartes' 'Geometry' and the classical tradition, in Revolution and continuity (Washington, DC, 1991), 183-196.
  36. E Grosholz, Descartes and Galileo : the quantification of time and force, in Mathématiques et philosophie de l'antiquité à l'âge classique (Paris, 1991), 197-215.
  37. H-J Treder, Descartes' Physik der Hypothesen, Newtons Physik der Prinzipien und Leibnizens Physik der Prinzipe, Studia Leibnitiana 14 (2) (1982), 278-286.
  38. K Hara, Comment Descartes a-t-il découvert ses ovales?, Historia Sci. 29 (1985), 51-82.
  39. R T Harris, Mathematics, Descartes, and the rise of modernity, Philos. Math. (2) 3 (2) (1988), 1-20.
  40. P Hilton and J Pedersen, Descartes, Euler, Poincaré, Pólya - and polyhedra, Enseign. Math. (2) 27 (3-4) (1981), 327-343.
  41. L Indorato and P Nastasi, The 1740 resolution of the Fermat-Descartes controversy, Historia Math. 16 (2) (1989), 137-148.
  42. S A Janovskaja, On the role of mathematical rigor in the history of the creative development of mathematics and especially on the 'Geometry' of Descartes (Russian), in Studies in systems of logic (dedicated to the memory of S. A. Janovskaja) 'Nauka' (Moscow, 1970), 13-50.
  43. S A Janovskaja, On the role of mathematical rigor in the creative development of mathematics and especially on Descartes' 'Geometry' (Russian), Istor.-Mat. Issled. 17 (1966), 151-183.
  44. A Joja, Descartes et le modèle mathémathique, An. Univ. Bucuresti Acta Logica 14 (1971), 5-27.
  45. W B Joyce and A Joyce, Descartes, Newton, and Snell's law, J. Opt. Soc. Amer. 66 (1) (1976), 1-8.
  46. S Krämer, Uüber das Verhältnis von Algebra und Geometrie in Descartes' 'Géométrie', Philos. Natur. 26 (1) (1989), 19-40.
  47. A A Krishnaswami Ayyangar, Rene Descartes, Math. Student 8 (1940), 101-108.
  48. T M Lennon, The Leibnizean picture of Descartes, in Nature mathematized I (Dordrecht-Boston, Mass., 1983), 215-226.
  49. T Lenoir, Descartes and the geometrization of thought : the methodological background of Descartes' 'Géométrie', Historia Math. 6 (4) (1979), 355-379.
  50. R J Levene, Sources of confusion in Descartes's illustrations, with reference to the history of contact lenses, in History of science 6 (Cambridge, 1967), 90-96.
  51. F Le Lionnais, Descartes et Einstein, Rev. Hist. Sci. Appl. 5 (1952), 139-154.
  52. G Loeck, Descartes' logic of magnitudes, Dialectica 43 (4) (1989), 339-372.
  53. M Di Loreto, The 'Stockholm inventory' and 'First register' of Descartes : Marginal notes on the posthumous mathematical works (Italian), Nuncius Ann. Storia Sci. 10 (2) (1995), 551-615.
  54. A Malet, Gregorie, Descartes, Kepler, and the law of refraction, Arch. Internat. Hist. Sci. 40 (125) (1990), 278-304.
  55. P Mancosu, Descartes's 'Géométrie' and revolutions in mathematics, in Revolutions in mathematics (New York, 1992), 83-116.
  56. M Martinet, Science et hypothèses chez Descartes, Arch. Internat. Hist. Sci. 24 (95) (1974), 319-339.
  57. J E McGuire, Space, geometrical objects and infinity : Newton and Descartes on extension, in Nature mathematized I (Dordrecht-Boston, Mass., 1983), 69-112.
  58. R Meyer, René Descartes. Betrachtungen zum Verhältnis von Philosophie und Naturwissenschaften im 17. Jahrhundert, in Naturwissenschaftliche Revolution im 17. Jahrhundert (Berlin, 1989), 55-63.
  59. A G Molland, Shifting the foundations : Descartes's transformation of ancient geometry, Historia Math. 3 (1976), 21-49.
  60. R H Moorman, The influence of mathematics on the philosophy of Descartes, Nat. Math. Mag. 17 (1943), 296-307.
  61. C Müller, Descartes' 'Géométrie' und die Begründung der höheren Analysis, Sudhoffs Arch. 40 (1956), 240-258.
  62. A Nardi, Descartes 'presque' galiléen : 18 février 1643, Rev. Histoire Sci. 39 (1) (1986), 3-16.
  63. D V Nikulin, The argument over the nature of extent : Henry More and René Descartes (Russian), Voprosy Istor. Estestvoznan. i Tekhn. (4) (1989), 3-11.
  64. G Nonnoi, Against emptiness : Descartes's physics and metaphysics of plenitude, Stud. Hist. Philos. Sci. 25 (1) (1994), 81-96.
  65. G Restrepo Sierra, Descartes and modern science (Spanish), Lect. Mat. 13 (1-3) (1992), 25-51.
  66. G A J Rogers, Descartes and the method of English science, Ann. of Sci. 29 (1972), 237-255.
  67. B Russell, History of Western Philosophy (London, 1961), 542-551.
  68. S Sakellariadis, Descartes' experimental proof of the infinite velocity of light and Huygens' rejoinder, Arch. Hist. Exact Sci. 26 (1) (1982), 1-12.
  69. S Sakellariadis, Descartes's use of empirical data to test hypotheses, Isis 73 (266) (1982), 68-76.
  70. H Samelson, Descartes and differential geometry, in Geometry, topology, and physics (Cambridge, MA, 1995), 323-328.
  71. I Schneider, Die Rolle des Formalen und des Individuums in der Mathematik bei Descartes und Leibniz, Sudhoffs Arch. 58 (1974), 225-234.
  72. A E Shapiro, Light, pressure, and rectilinear propagation : Descartes' celestial optics and Newton's hydrostatics, Studies in Hist. and Philos. Sci. 5 (1974), 239-296.
  73. W R Shea, Descartes : methodological ideal and actual procedure, Philos. Natur. 21 (2-4) (1984), 577-589.
  74. P Slezak, Descartes's diagonal deduction, British J. Philos. Sci. 34 (1) (1983), 13-36.
  75. R C Taliaferro, The concept of matter in Descartes and Leibniz, Notre Dame Mathematical Lectures 9 (Notre Dame, Ind., 1964).
  76. M Tarina, La géométrie de Descartes en perspective historique, in The XVIIIth National Conference on Geometry and Topology (Cluj-Napoca, 1988), 207-208.
  77. D Tiemersma, Methodological and theoretical aspects of Descartes' treatise on the rainbow, Stud. Hist. Philos. Sci. 19 (3) (1988), 347-364.
  78. S Q Tong, Descartes' way of thinking about mathematics (Chinese), Qufu Shifan Daxue Xuebao Ziran Kexue Ban 20 (1) (1994), 89-95.
  79. J A van Ruler, Descartes' theory of vortices (Dutch), in Summer course 1996 : chaos (Amsterdam, 1996 ), 9-17.
  80. L Vekerdi, Descartes' method for drawing a tangent (Hungarian), Mat. Lapok 17 (1966), 165-179.
  81. L Vekerdi, The infinitesimal method of Descartes for computing the area of the cycloid (Hungarian), Mat. Lapok 15 (1964), 196-203.
  82. S A Voho, Ordre et mathématiques chez Descartes, in Mathématiques- philosophie et enseignement (Yamoussoukro, 1994), 55-59.
  83. P Weingartner, The ideal of the mathematization of all sciences and of 'more geometrico' in Descartes and Leibniz, in Nature mathematized I (Dordrecht-Boston, Mass., 1983), 151-195.

JOC/EFR December 1997

The URL of this page is:
http://www-history.mcs.st-andrews.ac.uk/References/Descartes.html